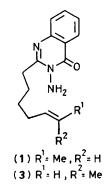
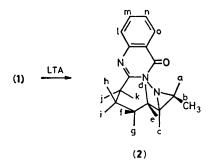
(1α and 1β)Methyl-1,1a,2,3,4,5-hexahydro-11*H*-azirino-[1'2':2,3][1,2]diazocino[8,1-*b*]quinazolin-11-one: Preference for a *trans*-Fused Aziridine in an Eight-membered Ring

Robert S. Atkinson and Karen L. Skinner


Department of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.

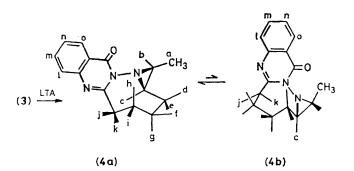
Intramolecular trapping of the nitrenes from oxidation of *cis*- and *trans*-2-(hept-2-en-7-yl)-3-aminoquinazolinones (1) and (3) gives the aziridines (2) and (4) respectively; in solution at room temperature (4) contains a mixture of nitrogen invertomers with the major invertomer having a *trans*-aziridine ring fusion, the latter being the only form present in the crystalline state.

As part of a programme having as its goal a description of the preferred transition state geometry for singlet nitrene addition to alkenes, we have been studying the intramolecular additions of *N*-nitrenes.


Oxidation of the N-aminoquinazolinone (1), m.p. 60— 61 °C with lead tetra-acetate (LTA) in dichloromethane by simultaneous addition of (1) and LTA to minimise deamination¹ gave the crystalline aziridine (2), m.p. 159— 160 °C (37%, isolated).

N.m.r. analysis of (2) at 400 MHz gives δ (CDCl₃) 8.19 (H₀, ddd, J₀₁ 0.7, J_{0m} 1.5, J_{0n} 8.1 Hz), 7.68 (H_m, ddd, J_{mo} 1.5, J_{mn} 7.0, J_{m1} 8.1 Hz), 7.60 (H₁, ddd, J₁₀ 0.7, J_{1n} 1.3, J_{1m} 8.1 Hz), 7.40 (H_n, ddd, J_{n1} 1.3, J_{nm} 7.0, J_{no} 8.1 Hz), 3.29 (H_k, ddd, J_{k1} 1.1, J_{kh} 11.7, J_{kj} 13.3 Hz), 2.92 (H_j, ddd, J_{jh} 1.1, J_{ji} 8.3, J_{jk} 13.3 Hz), 2.43 (H_a, dt, J_{ab} 5.5, J_{ac} 5.7 Hz), ca. 2.37 (H_c, ddd, J_{ce} 1.5, J_{ce} 5.7, J_{cd} 12.2 Hz), ca. 2.36 (H₁, dddd, J_{ce} 1.5, J_{ef} 6.0, J_{ed} 15.9 Hz), ca. 1.95 (H_t, ddddd, J_{fi} 1.1, J_{fd} 1.3, J_{fh} 5.9, J_{fe} 6.0, J_{fg} 15 Hz), 1.93 (H_h, ddddd, J_{nj} 1.1, J_{nf} 5.9, J_{nk} 11.7, J_{hg} 13, J_{h1} 14 Hz), 1.68 (H_g, ddddd, J_{ge} 1.3, J_{gi} 6.0, J_{gd} 10.2, J_{gh} 13, J_{gf} 15 Hz), 1.58 (3 × H_b, d, J_{ba} 5.5 Hz), 0.92 (H_d, dddd, J_{df} 1.3, J_{dg}

10.2, J_{de} 12.2, J_{de} 15.9 Hz). These data suggest that the eight-membered ring in (2) is rigid or at least heavily biased towards the twist-boat-chair² conformation shown.


Oxidation of (3), m.p. 79–80 °C, gives a different aziridine from (2) and examination of the crude reaction mixture by n.m.r. spectroscopy indicates that (2) is completely absent, *i.e.* nitrene addition to the *cis*-double bond is stereospecific.³

The 400 MHz spectrum of this crystalline aziridine, m.p. 118-119 °C (18%, isolated), from the oxidation of (3) shows that it is a mixture of invertomers at nitrogen (4a) and (4b) in the ratio 5:1 with the signals from the major invertomer at $\delta(CDCl_3)$ 8.19 (Ho, dd, Jom 1.7, Jon 8.0 Hz), 7.66 (Hm, ddd, J_{mo} 1.7, J_{mn} 7.0, J_{m1} 8.2 Hz), 7.56 (H₁, dd, J_{1n} 1.1, $J_{\rm lm}$ 8.2 Hz), 7.40 (H_n, ddd, $J_{\rm nl}$ 1.1, $J_{\rm nm}$ 7.0, $J_{\rm no}$ 8.0 Hz), 3.51 (H_k, ddd, J_{kh} 1.8, J_{ki} 10.9, J_{kj} 17.3 Hz), 3.08 (H_j, ddd, J_{jl} 1.2, J_{jh} 8.1, J_{jk} 17.3 Hz), 2.83 (H_b, td, J_{ba} 6.0, J_{bc} 8.1 Hz), 2.52 (H_c, ddd, J_{ce} 2.4, J_{cb} 8.1, J_{cd} 12.0 Hz), 2.37 (H_h, ddddd, J_{hf} 1.7, J_{hk} 1.8, J_{hj} 8.1, J_{hg} 12.1, J_{hi} 15.2 Hz), 2.12 $(H_{f}, ddddd, J_{fh} 1.7, J_{fe} 2.6, J_{f1} 6.8, J_{fd} 7.1, J_{fg} 14 Hz), ca.$ 2.02 (H_i, ddddd, J_{ig} 1.2, J_{1j} 1.2, J_{1f} 6.8, J_{1k} 10.9, J_{ih} 15.2 Hz), 2.00 (He, dddd, J_{ec} 2.4, J_{ef} 2.6, J_{eg} 7.0, J_{ed} 14 Hz), 1.80 $(H_g, ddddd, J_{g1} 1.2, J_{ge} 7.0, J_{gd} 10.4, J_{gh} 12.1, J_{gf} 14 Hz),$ 1.51 (3 × H_a, d, J_{ab} 6.0 Hz), 1.46 (H_d, dddd, J_{df} 7.1, J_{dg} 10.4, J_{de} 12.0, J_{de} 14.0 Hz). We assign structure (4a) to this major invertomer from analysis of coupling constants and hence dihedral angles. The larger geminal coupling constants for J_{jk} and J_{hi} (17.3 and 15.2 Hz respectively) are consistent with widening of the ring bond angles at these two positions.⁴

Sufficient signals from the minor invertomer (4b) are visible including δ (CDCl₃) 8.17 (H₀, dd, J_{0m} 1.6, J_{on} 8.0 Hz), 7.67 (H_m, ddd, J_{mo} 1.6, J_{mn} 7.0, J_{m1} 8.2 Hz), 7.58 (H₁, dd, J_{1n} 1.1, J_{1m} 8.2 Hz), 7.37 (H_n, ddd, J_{n1} 1.1, J_{nm} 7.0, J_{no} 8.0 Hz), 3.19 (H_k, ddd, J_{k1} 1.1, J_{kh} 11.9, J_{kj} 13.2 Hz), 2.91 (H_j, ddd, J_{jh} 1.2, J_{j1} 8.4, J_{jk} 13.2 Hz), 2.60 (H_c, ddd, J_{ce} 1.2, J_{ca} 7.1, J_{cd} 10.8 Hz) to allow the all-*cis* structure (4b) to be assigned to it. The similarity to the eight-membered ring conformation in (2) results in a high field methyl doublet (δ 1.13, J 6.3 Hz) as a result of the shielding effect of the C=O group. Not surprisingly, the spectrum of the major invertomer (4a) bears little resemblance to that of (2).

If a crystalline sample of this aziridine from oxidation of (3) is dissolved in $CDCl_3$, pre-cooled to -20 °C, and its

n.m.r. spectrum measured at this temperature, signals from the minor component (4b) are absent and only appear as the temperature is raised to +20 °C. We interpret this result as a preferential crystallisation of (4a) (a second-order asymmetric transformation) and the fact that the temperature at which inversion is occurring at a detectable rate is similar to that measured in other aziridines⁵ suggests that the relationship between major and minor components is one of invertomers rather than conformational isomers.

Presumably it is the strain resulting from three groups *cis* on an aziridine ring in (4b), and the mitigation in (4a) of some of the usual strain factors in medium-ring compounds, which lead to a preference for the *trans*-fused ring junction in (4a).

We thank the S.E.R.C. for support.

Received, 20th August 1982; Com. 1006

References

- 1 R. S. Atkinson, B. D. Judkins, and N. Khan, J. Chem. Soc., Perkin Trans. 1, 1982, 2491.
- 2 Cf. the conformational analysis of cyclo-octene epoxide: F. A. L. Anet and I. Yavari, J. Am. Chem. Soc., 1978, 100, 7814.
- 3 Intermolecular additions of N-nitrenes to alkenes are invariably stereospecific: R. S. Atkinson and C. W. Rees, J. Chem. Soc. C, 1969, 772; D. W. Jones, J. Chem. Soc., Chem. Commun., 1972, 884; T. L. Gilchrist, C. W. Rees, and E. Stanton, J. Chem. Soc. C, 1971, 988.
- 4 L. M. Jackman and S. Sternhell, 'Applications of Nuclear Magnetic Resonance in Organic Chemistry,' Pergamon Press, Oxford, 1969, p. 275.
- 5 R. S. Atkinson and J. R. Malpass, J. Chem. Soc., Perkin Trans. 1, 1977, 2242.